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Abstract

Dengue. virus infection is the leading arboviral cause of disease worldwide. A vaccine is being 

developed based on the attenuated DEN-2 virus, DEN-2 PDK-53. In this review, we summarize 

the characteristics of the parent DEN-2 PDK-53 strain as well as the chimeric viruses containing 

the prM and E genes of DEN-1, DEN-3 or DEN-4 virus in the genetic backbone of the DEN-2 

PDK-53 virus (termed DENVax). Tetravalent DENVax formulations containing cloned, fully 

sequenced isolates of the DEN-2 PDK-53 virus and the three chimeras have been evaluated for 

safety and efficacy in preclinical animal models. Based on the safety, immunogenicity and 

efficacy in preclinical studies, Phase 1 clinical testing of DENVax has been initiated.
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1. Introduction

1.1. Dengue fever: a worldwide public health threat

Dengue fever is caused by infection with dengue viruses, enveloped RNA viruses that occur 

as four recognized serotypes: Dengue type-1, -2, -3, and -4 (DEN-1 to -4) [1]. These viruses 

are transmitted from human to human by mosquitoes (primarily Aedes aegypti) [2]. Infection 

with a dengue virus can cause subclinical disease or overt illness ranging from mild 

symptoms to dengue fever to severe dengue hemorrhagic fever (DHF) [3,4]. Dengue fever is 

characterized clinically as an acute febrile illness with two or more manifestations that can 

include headache, retro-orbital pain, myalgia, arthralgia, rash, hemorrhagic manifestations, 

or leucopenia [1]. The most severe forms of dengue fever – DHF and dengue shock 

syndrome (DSS) – are life threatening. Dengue is the most rapidly spreading mosquito-
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borne viral disease in the world, and 3.6 billion people in tropical and subtropical areas are 

at risk of dengue infection [5,6]. An estimated 36 million cases of dengue fever occur each 

year, resulting in about 2.1 million cases of DHF/DSS and more than 20,000 deaths, 

primarily among children [5,7].

Infection with one DEN virus serotype results in life-long protection from re-infection by 

that serotype, but does not prevent secondary infection by one of the other three DEN virus 

serotypes [8]. Significantly, previous infection with one DEN serotype may lead to an 

increased risk of severe disease (DHF/DSS) upon secondary infection with a different 

serotype [9]. The specific mechanism causing DHF/DSS is controversial. The pathogenesis 

presented in DHF/DSS patients is thought to result from both viral virulence factors and the 

host immune response [10,11]. It is hypothesized that non-neutralizing antibodies reacting 

with a second DEN strain contribute to viral pathogenesis by antibody-dependent 

enhancement (ADE) of infection [12,13]. Antibody:virus complexes can be directly 

internalized by Fcγ receptor-bearing cells in which dengue virus can replicate, increasing 

virus load (extrinsic ADE). In addition, ligation of Fcγ receptors can inhibit innate immunity 

and increase production of certain cytokines that can increase viral infection and 

pathogenesis (intrinsic ADE) [14].

No dengue vaccine is currently available nor is there an antiviral therapy for dengue virus 

infection. All four dengue serotypes have co-circulated in most endemic countries at various 

times, resulting in concurrent infection by, and protection from, multiple serotypes [15]. 

There have been no reports of sequential disease with a fourth DEN serotype, suggesting 

that effective protection can be obtained by immunization against several serotypes [15,16]. 

Finally, there is the potential for ADE associated with non-neutralizing cross-reactive 

antibodies arising from immunization with monovalent DEN vaccines. Thus, vaccine 

development has focused on tetravalent vaccines that simultaneously provide protection 

against all four serotypes of DEN virus [17].

1.2. Dengue virus vaccines

Tetravalent vaccine candidates in development include mixtures of four different live-

attenuated viruses, recombinant live-attenuated viruses, protein subunit vaccines or DNA 

vaccines [17]. Early efforts at developing a tetravalent vaccine comprising four live-

attenuated viruses developed at Mahidol University were suspended when the DEN-3 

vaccine was found to be insufficiently attenuated [18]. Co-development of live-attenuated 

tetravalent vaccines by the Walter Reed Army Institute of Research and Glaxo-SmithKline 

Biologicals has completed Phase 2 trials [19] but there are currently no plans for additional 

testing.

Three chimeric recombinant dengue vaccines are under active development. Chimeric 

viruses based on a yellow fever virus backbone are in Phase 2b clinical testing in Thailand 

and Phase 3 testing worldwide by Sanofi Pasteur ([20] and reviewed by Guy et al., this 

issue). Recombinant vaccine viruses based on the DEN-2 PDK-53 attenuated virus 

backbone (DENVax) are the subject of this review. Recombinants with a 30 nucleotide 

deletion in the 3′-untranslated region (UTR) of the dengue virus genome were optimized for 

safety and efficacy in preliminary monovalent Phase 1 testing [21]; different tetravalent 
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formulations of these “delta 30” constructs are in Phase 1 clinical testing (reviewed by 

Durbin et al. in this issue).

A recombinant protein vaccine consisting of adjuvanted recombinant envelope (E) proteins 

expressed in insect cells [22] has completed monovalent Phase 1 clinical testing and 

tetravalent formulations have been manufactured (reviewed by Coller et al., this issue). 

Several additional approaches are currently being evaluated in preclinical studies. They 

include the use of (1) adenoviral vectors that express combinations of two of the four dengue 

serotypes [23,24]; (2) DNA vaccines expressing the E protein [25]; and (3) the E protein 

domain III either alone [26], or as domain-based single recombinant envelope protein that 

can induce tetravalent neutralizing antibody responses [27].

1.3. DEN-2 PDK-53: a promising DEN-2 vaccine

The four monovalent DENVax vaccine strains are based on a common DEN virus backbone: 

an attenuated DEN-2 virus strain, termed PDK-53, generated by 53 serial passages in 

primary dog kidney cells [28]. The strain was derived at Mahidol University, Bangkok, 

Thailand from a wild-type DEN-2 virus originally recovered from the serum of a patient 

with DHF/DSS in Thailand (DEN-2 16681). The DEN-2 PDK-53 strain has been 

extensively studied in vitro and in vivo. The strain exhibits an attenuated replication 

phenotype in mammalian and insect cell cultures [28–30], attenuated neurovirulence in 

newborn ICR mice [29,30], and attenuated replication in non-human primates [31]. In 

addition, DEN-2 PDK-53 has been extensively tested in human clinical trials.

1.4. Clinical studies with DEN-2 PDK-53 virus

The DEN-2 PDK-53 strain has been studied clinically both as a monovalent vaccine and in 

multivalent formulations with one or more attenuated dengue virus strains of other 

serotypes. An overview of previous human experience with the DEN-2 PDK-53 strain, 

based on literature reports of completed clinical studies, is provided here (Table 1).

An uncontrolled study of the safety and immunogenicity of DEN-[2 PDK-53 was conducted 

in 10 healthy male Thai volunteers in 1984 [32]. All subjects were non-immune to dengue 

virus; however, five showed evidence of prior exposure to Japanese encephalitis virus. The 

subjects were vaccinated subcutaneously with 4.3–4.4 log10 plaque forming units (PFU) of 

DEN-2 PDK-53 and observed for 21 days post-immunization. No serious adverse reactions 

or abnormal signs (identified as elevated temperature, bleeding, hypotension or organ 

involvement) were observed, and there were no reactions at the injection site. Transient mild 

headache or mild abdominal pain occurring between days 8 and 17 were reported by half of 

the subjects. Other symptoms, including myalgia and eye pain, occurred less frequently. No 

abnormal clinical chemistry findings were observed. Hematology parameters were within 

normal values. There was a slight reduction in total white blood cell counts observed on day 

10 post-immunization that returned to near baseline levels by day 14. All 10 volunteers 

developed neutralizing antibodies to wild-type DEN-2 which persisted for at least 18 

months. Viremia was detected in only one subject on day 10 post-vaccination by 

amplification in cell culture (but not by direct plaque isolation). The isolated virus was 
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identified as DEN-2 and was phenotypically attenuated in vitro. All subjects seroconverted, 

with serum neutralizing antibodies to DEN-2 that persisted for 1.5 years [32].

Vaughn et al. [33] reported on a second Phase 1 study of the safety of the monovalent 

DEN-2 PDK-53 vaccine. A single 3.9–4.3 log10 PFU dose of the DEN-2 PDK-53 vaccine 

was administered subcutaneously in the deltoid region of 10 18–24-year-old American male 

(N = 7) and female (N = 3) volunteers who were non-immune to flavivirus (including 

dengue virus serotypes 1–4, Japanese encephalitis virus, St. Louis encephalitis virus, and 

yellow fever virus). In this uncontrolled study, subjects were observed for 21 days post-

vaccination. Overall, there were no serious adverse reactions reported. There was no 

induration, redness or warmth at the injection site although one subject reported mild arm 

soreness for a few hours after injection. Two subjects did not report any symptoms during 

the observation period. The remaining eight subjects experienced symptoms including 

headache, myalgia and arthralgia, most of which were mild in intensity. One subject 

reported intermittent (5 min to 2 h) headaches on seven days beginning five days after 

vaccination. The headaches resolved without sequelae. Most laboratory results were within 

normal limits. Elevated aspartate amino transferase (AST) levels were observed in two 

patients; both correlated with exercise. As in the Thailand study, a slight reduction in total 

white blood cell counts was observed 8–12 days post-vaccination in seven of the 10 

volunteers. Viremia was detected in eight of the 10 subjects between study days 4 and 12; all 

viruses had small plaque phenotype. All subjects developed neutralizing antibodies that 

persisted for at least one year, and out to two years for the five subjects who were available 

for evaluation at that time point.

1.5. Clinical studies with multivalent formulations containing DEN-2 PDK-53

DEN-2 PDK-53 virus has also been used in combination with up to three live, attenuated 

DEN vaccine strains representing other dengue serotypes, in an attempt to develop a live-

attenuated multivalent vaccine. Bhamarapravati and co-workers [34,35] reported studies in 

healthy adult volunteers in which DEN-2 PDK-53 was evaluated in bivalent combination 

with an attenuated DEN-1 strain (seven volunteers), an attenuated DEN-4 strain (11 

volunteers), in a trivalent mixture with both the DEN-1 and DEN-4 strains (11 volunteers), 

and finally in a tetravalent formulation with attenuated DEN-1, DEN-3 and DEN-4 virus 

strains (six volunteers). The authors state the vaccines were well-tolerated and did not 

produce clinically significant signs, symptoms or laboratory abnormalities [35]. All 

individuals vaccinated with a single dose of the bivalent vaccine formulations demonstrated 

serum neutralizing antibodies against DEN-2 and DEN-1 or DEN-4. Among individuals 

who received a single dose of the tetravalent formulation, five out of six developed DEN-2 

neutralizing antibodies, six out of six developed neutralizing antibodies for DEN-1 and 

DEN-3, and four out of six developed neutralizing antibodies for DEN-4.

On the basis of the promising preliminary data cited above, several clinical trials were 

performed to evaluate and optimize tetravalent vaccine formulations containing DEN-2 

PDK-53 and three other live-attenuated DEN vaccines developed at Mahidol University. 

The attenuated DEN-1, DEN-3 and DEN-4 viruses in these investigational vaccine 

Osorio et al. Page 4

Vaccine. Author manuscript; available in PMC 2015 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



formulations were derived separately from DEN-2 PDK-53 by serial passage on primary 

dog kidney (PDK) cells or primary African green monkey kidney cells [28].

Kanesathasan et al. [36] described a study of the four monovalent vaccines (N = 5 for each 

group) and the tetravalent formulation (N = 10) compared to a vehicle control (N = 10) in 

adult volunteers. The monovalent vaccines were given in single subcutaneous doses of 3.6–

4.4 log10 PFU and were well-tolerated with few side effects. All vaccinated individuals 

seroconverted to the respective DEN virus. The tetravalent formulation showed significantly 

increased clinical effects compared to the placebo control. The clinical effects were 

associated with high levels of viremia by the DEN-3 vaccine component. Tetravalent 

vaccine recipients seroconverted predominantly to DEN-3 and showed variable 

seroconversion to the other DEN viruses.

Due to the predominance of DEN-3 virus replication, and increased clinical symptoms with 

formulations that included the DEN-3 vaccine, several formulations with higher 

concentrations of the DEN-1, DEN-2 and DEN-4 components and a lower dose of the 

DEN-3 component were tested in adults (N = 59 total for seven formulations [37]) and 

children (N = 40 and N = 42 for each of two different formulations [38]). In these studies, 

the DEN-3 virus was still the dominant replicating vaccine virus and still dominated the 

immune responses. A study with the two preferred formulations was conducted in dengue-

naïve adult volunteers in Australia. Subjects showed significant dengue-like clinical signs 

associated with DEN-3 replication [18] and further studies of this live, attenuated tetravalent 

vaccine were suspended.

Despite the clinical symptoms associated with the attenuated DEN-3 virus component of 

these tetravalent formulations, two follow-up studies of previously vaccinated children 

provided insight into the safety of the DEN-2 PDK-53 component. Using sera from Thai 

children that were given a single dose of the tetravalent vaccine 3–8 years prior, as well as 

samples from naturally infected age-matched controls, Guy et al. [39] studied the ability of 

these sera to stimulate antibody-dependent enhancement (ADE) of viral replication in vitro. 

At low serum dilutions that approximated the concentrations in vivo, assays with sera from 

the vaccinated children resulted either in no ADE or ADE at a similarly low level to that 

observed in naturally infected children. Three of the 16 individuals studied had 

seroconverted only to DEN-2. Two of these sera demonstrated low levels of ADE in vitro at 

levels similar to or much lower than those observed with corresponding age-matched control 

subjects in the endemic area. Within the limits of the in vitro test system used, the vaccinees 

had no apparent increased risk of ADE relative to naturally-infected, age-matched controls.

Chanthavanich et al. [40] reported on the long-term follow-up of 113 Thai children given a 

single dose of the tetravalent vaccine 3–8 years prior, aged 4–15 years at the time of 

vaccination. These children were age- and address-matched with two controls per vaccinee 

in a retrospective study to evaluate the immune response and occurrence of dengue infection 

after vaccination. 75% of the individuals had seroconverted to DEN-2 virus 6–12 months 

post-vaccination while 82% had antibodies to DEN-2 virus 3–8 years (average 6.8 years) 

after vaccination. Similar trends were observed for DEN-1, DEN-3 and DEN-4 viruses. The 

increase in seroconversion is likely due to natural exposure of the children who lived in an 
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endemic area. Importantly, there were no excess hospitalizations for clinically suspected 

dengue fever (DF) or dengue hemorrhagic fever (DHF) in vaccinees (4 of 113, one with DF 

and three with DHF) compared to the unvaccinated control children (14 of 226 with DHF). 

While neither of these studies was sufficiently powered to preclude modest increases in 

severe dengue disease, it is encouraging that immunization with the tetravalent vaccine did 

not cause a high incidence of either ADE in vitro or an increase in the incidence of severe 

dengue illness after long-term follow-up.

1.6. DENVax: chimeric DEN-2 PDK-53-based tetravalent vaccine

As members of the Flavivirus genus of the virus family Flaviviridae, dengue viruses possess 

a single-stranded, positive-sense, approximately 11-kb RNA genome that contains a single 

long open reading frame bracketed by 5′ and 3′ non-coding regions. The gene order in the 

translated polyprotein is capsid–premembrane/membrane (prM/M)–envelope (E)–non-

structural protein 1 (NS1)–NS2A–NS2B–NS3–NS4A–NS4B–NS5 (Fig. 1). Upon cDNA 

cloning and sequence analysis of virus sampled directly from a vial of the Mahidol vaccine, 

two major genetic variants, termed V and E, were identified in the DEN-2 PDK-53 

candidate vaccine virus. Both DEN-2 PDK-53 variants share eight nucleotide mutations, 

relative to the wild-type DEN-2 16681 parent, but the DEN-2 PDK-53-V variant possesses a 

unique ninth mutation in the NS3 gene which modifies the wild-type glutamic acid at 

residue 250 (single letter code, E) to valine (single letter code, V) in the translated NS3 

protein [30].

The DENVax vaccines are based on the genetic background of the DEN-2 PDK-53-V 

variant. The DENVax-2 virus was derived from an infectious cDNA clone of the DEN-2 

PDK-53-V variant. Whole genome sequencing and molecular genetics techniques have 

demonstrated that the mutations that are necessary and sufficient for attenuation of DEN-2 

PDK-53 lie outside the structural genes in the 5′ non-coding region (5′NC), and in non-

structural proteins 1 and 3 (NS1 and NS3) [29]. Attenuated vaccine strains for the DEN-1, -3 

and -4 were engineered by replacing the DEN-2 PDK-53 structural genes, premembrane 

(prM) and envelope (E), with the prM and E genes of wild-type DEN-1, DEN-3 or DEN-4 

virus, as shown in Fig. 1 [41]. The origins of the four wild-type DEN virus strains on which 

the DENVax vaccine is based are shown in Table 2. The chimeric viruses express the 

surface antigens of DEN-1, DEN-3 or DEN-4 and retain six of the nine PDK-53 virus-

specific genetic alterations (mutation in the 5′NC, four amino acid mutations in NS1, NS2A, 

NS3, and NS4A, and a silent mutation at nt 5547), including the three major genetic 

determinants (in the 5′NC, NS1, and NS3) responsible for the attenuation of the DEN-2 

PDK-53 strain (triangles in Fig. 1). Only the DEN-2 PDK-53-V component of DENVax 

retained the PDK-53 virus-specific amino acid mutation in prM and silent mutation at nt 

2055 in the E gene. At the locus of the ninth, silent PDK-53 virus-specific nucleotide 

mutation, the DEN-2 16681 virus-specific C nucleotide was retained in all of the engineered 

vaccine strains. The research grade chimeric DEN viruses have been referred to as 

“ChiDEN-V”. The equivalent viruses, as well as the DEN-2 PDK-53-V virus, re-derived 

under Good Manufacturing Practices (GMP) for vaccine manufacture are referred to as 

“DENVax” (Huang et al., in preparation).
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The ChiDEN-V viruses were shown to retain critical DEN serotype-specific neutralizing 

epitopes using reference neutralizing antibody reagents. In a plaque reduction neutralization 

test, the ChiDEN-V viruses were neutralized to the same extent as the homologous wild-

type DEN virus. The mean plaque size of each of the three ChiDEN-V virus strains was 

significantly smaller than that of the corresponding homologous, wild-type strain in LLC-

MK2 monolayers grown in six-well plates (see fig. 1 in [41]). The ChiDEN-V viruses 

replicated to peak titers of about 6.4–6.9 log10 PFU/mL in LLC-MK2 cells versus the 7.0–

7.6 log10 PFU/mL peak titers of the homologous wild-type DEN viruses (see fig. 1 in [41]). 

The ChiDEN-V viruses also replicated efficiently in Vero cells, with peak titers ranging 

from 6.7 to 7.4 log10 PFU/mL (see fig. 2 in [41]). The ChiDEN-V viruses all exhibited a 

temperature-sensitive phenotype (≥90% reduction in viral titer at 38.7 °C versus 37 °C) in 

LLC-MK2 cells (data not shown; see fig. 1 in [41]).

The ChiDEN-V viruses all exhibited greatly reduced replication profiles and peak 

replication titers when grown in C6/36 (Aedes albopictus mosquito) cells (fig. 2 in [41]). 

The peak titers of these ChiDEN-V viruses were decreased by 3.7–5.8 log10 PFU/mL, 

relative to the peak titers of the wild-type DEN viruses. The common DEN-2 PDK-53 

genetic background shared by these ChiDEN-V viruses clearly controlled their crippled 

replication phenotype in C6/36 cells, as ChiDEN viruses with the wild-type DEN-2 16681 

genetic background exhibited only modest reductions of 0.6–1.8 log10 PFU/mL relative to 

the peak titers of the respective wild-type DEN viruses (see fig. 2 in [41]).

1.7. Genetic stability of DEN-2 PDK-53-based chimeras

The genotype leading to attenuation of the DEN-2 PDK-53 strain has been investigated in 

detail using recombinant viruses with varying combinations of the nine nucleotide 

differences between the DEN-2 PDK-53-V strain and the wild-type parent, 16681. 

Mutations at three loci were found to contribute individually, and synergistically, to PDK-53 

attenuation, specifically, a C to T transition at nucleotide 57 in the 5′ non-coding region 

(5′NC-57), a Gly-to-Asp substitution in non-structural protein 1, amino acid 53 (NS1-53) 

and a Glu-to-Val substitution in non-structural protein 3, amino acid 250 (NS3-250) [29]. It 

is possible that the PDK-53 virus-specific mutations in prM (DEN-2 PDK-53-V virus only), 

NS2A, and/or NS4A might further modulate attenuation to an undefined extent. 

Additionally, the juxtaposition of heterologous genes in the chimeric DEN viruses, 

particularly in ChiDEN-3-V and -4-V, may also contribute to an attenuated phenotype, 

relative to wild-type virus [41].

The genetic stabilities of the ChiDEN-V viruses at the three loci associated with PDK-53 

viral attenuation were evaluated by serial passage of the viral stocks in Vero cell cultures 

(table 2 in [42]). No evidence of reversion at the NS1-53 or NS3-250 locus was observed by 

sequence analyses of the ChiDEN-V viruses at the Vero passage 10. However, the 5′NC-57-

T mutation did show a propensity to revert during passage in Vero cells. A sensitive, 

quantitative single nucleotide polymorphism assay was developed to permit finer assessment 

of the level of reversion at this locus. This TaqMan-based mismatch amplification mutation 

assay (TaqMAMA) permitted detection of less than 1% reversion at the 5′NC-57 locus in 

the viral population [42]. In eight separate ChiDEN-V viral stocks, up to 5% reversion at the 
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5′NC-57 locus was observed at passage level 1. The level of reversion increased with 

passage in all stocks, reaching >50% of the population by passage level 9 in two of the eight 

stocks. This suggests that during passage of the virus in Vero cells, the virus with reversion 

at the 5′NC-57 locus replicates more efficiently than viruses with the attenuating 5′ 

mutation. Refinements in the TaqMAMA currently permit detection of <0.05% reversion at 

the 5′NC-57 locus, and enable the establishment of release criteria to verify an upper limit of 

reversion at this locus in vaccine lots.

Given the propensity of the 5′NC-57 locus to revert, detailed knowledge regarding the 

contribution of each of the three genetic loci of attenuation (individually and in various 

combinations with the other two attenuation loci) to the overall attenuated phenotype of the 

virus is important. Such data have been generated for the DEN-2 PDK-53 virus ([29]; 

summarized in [43]). The NS1-53 attenuation locus (highly stable during passage of the 

ChiDEN-V viruses in Vero cells), when engineered alone in the genetic background of wild-

type DEN-2 16681 virus, encoded nearly complete attenuation of neurovirulence for 

newborn ICR mice, and decreased plaque size in LLC-MK2 cells and decreased replicative 

ability in C6/36 cells to an extent equivalent to that of the single 5′NC-57 attenuating 

mutation engineered in the 16681 background. Only the highly stable NS1-53 and NS3-250 

mutations were identified as genetic loci that significantly contributed to the temperature-

sensitive phenotype of DEN-2 PDK-53 virus [29]. Furthermore, experimental biological 

reversion of any of these indicated phenotypic markers of attenuation to a corresponding 

phenotype approaching that of the wild-type DEN-2 16681 virus required engineered 

reversions in at least two of the three loci, one necessarily at the NS1-53 locus, in the 

PDK-53 genetic background [29]. Thus, in the event of significant reversion at the 5′NC-57 

locus, the current evidence suggests that the partially reverted vaccine virus would retain a 

significantly attenuated phenotype as a result of the remaining, stable attenuating mutations 

at NS1-53 and NS3-250.

2. In vivo properties of DEN-2-PDK-53 chimeric viruses

2.1. Neurovirulence in newborn ICR mice

The neurovirulence of three ChiDEN-V viruses expressing the prM/E genes of DEN 

serotypes 2, 3 and 4 has been examined in newborn ICR mice. Because the wild-type 

DEN-1 16007 strain lacked neurovirulence in newborn ICR mice [44], the ChiDEN-2/1 

virus was not tested for neurovirulence in this model. However, an earlier study 

demonstrated that ChiDEN-2/1 viruses expressing the capsid gene, as well as prM/E genes, 

of DEN-1 16007 virus in the PDK-53 background also lacked neurovirulence for newborn 

ICR mice [44].

The DEN-2 PDK-53 virus and the two ChiDEN-V viruses expressing the prM/E genes of 

DEN serotypes 3 and 4 exhibited attenuation of neurovirulence in groups of newborn ICR 

mice inoculated intracranially with 104 PFU of virus (see Fig. 2, modified from fig. 3 in 

[41]). No mouse mortality, or evidence of illness requiring euthanasia, occurred in mice 

injected with these three viruses. These results contrast with the 87.5%, 100%, and 100% 

morbidity/mortality observed following intracranial challenge with 104 PFU of the 

corresponding wild-type DEN-2 16681, DEN-3 16562 or DEN-4 1036 virus, respectively.
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2.2. Immunogenicity of DEN-2-PDK-53 chimeric viruses in mice

Wild-type DEN-2, DEN-3, and DEN-4 viruses fail to induce robust anti-viral neutralizing 

antibody responses after administration to ICR mice [41,44]. Therefore, the immunogenicity 

of each chimeric virus was tested in transgenic, AG129 knockout mice. This mouse strain 

lacks receptors for interferon-α/β and interferon-γ, and has been shown to be more 

permissive for DEN-2 replication following infection [45]. Immunization of AG129 mice 

with all four serotypes of DEN virus consistently results in production of neutralizing 

antibodies, as measured by neutralization of ≥50% of DEN virus in a plaque-reduction 

neutralization test (PRNT50). Intraperitoneal immunization of adult AG129 mice with 104 

PFU of ChiDEN-2/1-V virus elicited a pooled reciprocal PRNT50 titer of 640 against 

DEN-1 virus, and protected the immunized mice against a severe challenge with the AG129 

mouse-virulent DEN-1 Mochizuki virus (see Table 3, modified from table 5 in [41]). In a 

separate experiment, ChiDEN-2/3V and ChiDEN-2/4-V viruses, each at a dose of 105 PFU, 

elicited neutralizing antibodies in these mice. The magnitude of the neutralizing response in 

the mice immunized with the ChiDEN-2/4-V virus (pooled reciprocal primary and boosted 

titers of 40 and 320, respectively) was less robust than in mice that received ChiDEN-3-V 

(160 and 640, respectively) (Table 3, modified from table 6 in [41]).

A tetravalent formulation of the ChiDEN-V viruses, containing 105 PFU of each virus, 

elicited high neutralizing antibody titers against wild-type DEN-1 (pooled reciprocal 

primary and boosted titers of 640 and 2560, respectively), DEN-2 (1280 and 2560), DEN-3 

(160 and 1280), and DEN-4 (80 and 320) viruses in adult AG129 mice (Table 4; see table 7 

in [41]). The neutralizing antibody titers were similar to the homologous titers elicited by 

each monovalent virus, indicating no significant interference among the vaccine components 

in tetravalent formulations in the AG129 mouse model.

2.3. Preparation for clinical trials: a summary of preclinical development of DENVax

The extensive clinical data with DEN-2 PDK-53 and the in vitro and in vivo preclinical 

characterization of the DEN-2 PDK-53-based recombinant chimeras reviewed above support 

the testing of tetravalent DENVax formulations in human clinical trials. To complete 

preclinical development of the DENVax vaccine, manufacturing quality DENVax strains 

were derived by transfection of clinical grade Vero cells with RNA transcribed from cDNA 

clones of each of the four DENVax viruses. These strains were plaque purified and 

expanded to make the master seed viruses, working seed viruses and bulk vaccine 

preparations. The master seed strains were completely sequenced and characterized in vitro 

and in vivo to verify retention of all attenuation markers (Huang, et al., in preparation). 

Tetravalent formulations were manufactured by combining the bulk vaccines with excipients 

that promote the thermal stability of dengue viruses (Wiggan et al., submitted). Tetravalent 

DENVax formulations were tested in preclinical models for safety (Huang et al., in 

preparation). The DENVax formulations also were tested for efficacy in non-human 

primates [46].

2.4. Safety, immunogenicity and efficacy of tetravalent DENVax vaccines in monkeys

Monkeys infected with DEN virus do not develop clinical symptoms. However, viremia and 

the development of DEN virus-specific neutralizing antibodies have been regarded as 
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markers of safety and immunogenicity for candidate DEN vaccines. Early immunogenicity 

studies in monkeys with the ChiDEN-V viruses were conducted at Mahidol University [47]. 

More recently, we evaluated the safety and efficacy of three tetravalent formulations 

containing different ratios of DENVax viruses in cynomolgus macaques (Macaca 

fascicularis) [46]. A formulation termed 3:3:3:3 contained 103 PFU per dose of each of the 

four DENVax viruses. The 3:3:5:5 formulation contained 103 PFU of DENVax-1 and 

DENVax-2 and 105 PFU of DENVax-3 and DENVax-4 per dose. A 5:5:5:5 formulation 

contained 105 PFU of each of the four viruses. Subcutaneous injection of the three DENVax 

formulations was well-tolerated. Transient, low level viremia of only the DENVax-2 

component was detected after the primary immunization (≤2.4 log PFU/mL for no more 

than five consecutive days), yet virus neutralizing antibody titers were induced against all 

four dengue virus serotypes after one or two administrations of vaccine (see Fig. 3, from 

table 1 in [46]). Significant neutralizing antibody titers were induced to DEN-1, DEN-2 and 

DEN-3 by one or two administrations of the tetravalent formulations. The neutralizing 

antibody responses to DEN-4 were significantly lower. The 3:3:5:5 formulation, containing 

increased titers of DENVax-3 and DENVax-4, provided the most balanced neutralizing 

antibody responses. Many animals seroconverted to multiple DEN serotypes (as defined as a 

PRNT50 titer of >10 and a four-fold increase over pre-immunization titer). Significant 

seroconversion to each DEN serotype (greater than 87.5% seroconversion) was observed 

after two immunizations with either the 3:3:5:5 or 5:5:5:5 formulation (Table 5). After 

immunization, animals were segregated into four cohorts for challenge with each of the four 

wild-type DEN serotypes. While non-human primates do not show clinical signs after DEN 

infection, there is demonstrable viremia. All animals immunized with the high dose 

formulation (5:5:5:5) were protected from viremia after challenge with each of the four 

DENV. Immunization with the lower dose formulations (3:3:3:3 and 3:3:5:5) completely 

protected animals from viremia caused by DEN-3 virus or DEN-4 virus; immunized animals 

were partially protected from viremia caused by DEN-1 and DEN-2. These data guided the 

choice of tetravalent DENVax formulations to be used in subsequent human clinical trials.

The manufacturing and characterization of the DENVax vaccines and data from the 

preclinical safety, immunogenicity and efficacy studies were submitted to the Food and 

Drug Administration (FDA) as an Investigational New Drug application (IND). In addition, 

the data were submitted to the Instituto Nacional de Vigilancia de Medicamentos y 

Alimentos (INVIMA) the regulatory authorities in Colombia, in support of Phase 1 clinical 

trials.

2.5. Initial Phase 1 study in healthy U.S. volunteers

The first clinical trial to investigate the safety and preliminary immunogenicity of the 

tetravalent DENVax vaccine is being conducted in healthy adult volunteers in the United 

States and is sponsored by the Division of Microbiology and Infectious Disease (DMID) of 

the National Institute of Allergy and Infectious Disease (NIAID). DMID is conducting the 

clinical trial at its Vaccine and Treatment Evaluation Unit (VTEU) at St. Louis University, 

St. Louis, MO (see www.clinicaltrials.gov). The primary objective of the DMID-sponsored 

study is to assess the safety and tolerability of the vaccine following administration of two 

doses of vaccine on days 0 and 90. The study is enrolling a total of 72 subjects, randomized 
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to one of four groups. Subjects within each group are randomized to receive vaccine or 

placebo (Phosphate Buffered Saline; PBS) in a 12:6 ratio. The first two groups receive a low 

dose formulation of DENVax (approximately 104 PFU of DENVax-1, 103 PFU of 

DENVax-2, 104 PFU of DENVax-3 and 105 PFU of DENVax-4) (or placebo) administered 

by either subcutaneous (SC) or intradermal (ID) injection in the deltoid region. The 

subsequent two groups are receiving a high dose formulation of DENVax (approximately 

105 PFU of DENVax-1, 104 PFU of DENVax-2, 105 PFU of DENVax-3 and 105 PFU of 

DENVax-4 per dose) or placebo, again administered by either SC or ID injection in the 

deltoid region. Subjects are vaccinated on day 0 and boosted with the same dose on day 90. 

Primary outcome measures include the incidence and severity of vaccine-associated Adverse 

Events (AEs) from the time of the first dose of vaccine through the end of the study, as well 

as an assessment of vaccine reactogenicity based on the incidence and severity of solicited 

AEs recorded during the first 14 days after each dose administration. The secondary 

objective of the study is to evaluate the immune response to the vaccine based on the levels 

of neutralizing antibodies to each of the four dengue serotypes and the proportion of subjects 

who seroconvert to each of the four dengue serotypes. The level of viremia associated with 

each vaccine virus serotype is being assessed based on the quantity of viral RNA in the 

blood.

2.6. Ongoing Phase 1 study in a dengue non-endemic region of Colombia

To assess the safety and efficacy of the vaccine in a population reflective of those at most 

risk of disease, a second Phase 1 study is being conducted in healthy, flavivirus-naïve, adult 

volunteers in a high altitude region of Colombia. At high altitude, there is no Aedes aegypti 

and no endemic dengue disease. The objectives of this Inviragen-sponsored study are to 

evaluate the safety, tolerability and immunogenicity of the DENVax vaccine in healthy 

adults following subcutaneous or intradermal administration at two different dose levels 

compared to a saline placebo. The study is evaluating the same dose levels and dosing 

schedule as the DMID-sponsored study being conducted in the United States, but will enroll 

a larger number of subjects per group from a population more representative of those in 

most need of the vaccine.

3. Discussion

There are numerous advantages to a tetravalent, chimeric dengue vaccine based on the well-

characterized DEN-2 PDK-53 backbone. The mutations in the viral non-structural genes 

which are necessary and sufficient to express the attenuated phenotype of DEN-2 PDK-53 

have been genetically identified [29,41]. The three recombinant virus strains for DEN-1, 

DEN-3, and DEN-4 contain the same attenuating mutations as the parental DEN-2 PDK-53 

strain. Since all four DENVax components share the identical attenuating mutations, 

recombination between vaccine strains cannot generate more pathogenic viruses.

Direct knowledge of the attenuating mutations in these vaccine candidates permits the 

design of specific genetic quality control tests to ensure that the vaccine used in clinical 

studies maintains the attenuated genotype. We have sequenced the genomes of the master 

seed DENVax viruses to assure the presence of the attenuating mutations in the 5′NCR, 

NS-1 and NS-3. In addition, we use spot-sequencing of the attenuation loci as a release test 
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for GMP preparations of each of the four DENVax viruses. The presence of the attenuating 

mutations assures that the vaccine viruses do not replicate as efficiently as wild-type dengue 

viruses in mammalian and mosquito cells [41]. Animal model testing demonstrates that the 

pathogenicity of the vaccine viruses is significantly attenuated compared to wild-type 

dengue viruses [41].

Attenuation of the viruses through the three mutations in the DEN-2 PDK-53 backbone is 

achieved without compromising the ability of each of the four viruses to elicit an appropriate 

serotype-specific neutralizing antibody response. The individual monovalent vaccines and 

mixtures of all four DENVax viruses induce neutralizing antibody responses to all four DEN 

viruses in mice [41] and in monkeys [46]. Although there currently is no DEN-3 or DEN-4 

challenge model in adult mice, AG-129 mice immunized with tetravalent DENVax 

formulations are protected from infection by wild-type DEN-1 or DEN-2 viruses ([41]and 

Huang et al., in preparation). Monkeys immunized with tetravalent DENVax formulations 

are protected from challenge with wild-type DEN-1, DEN-2, DEN-3 or DEN-4 virus [46]. 

In this study, animals were challenged 30 days post second vaccination and the short 

timeframe from vaccination to challenge would be considered by some to not be optimal 

when testing vaccine protective efficacy.

Mice or monkeys immunized with a priming dose of tetravalent DENVax show no, or 

significantly reduced, viremia and no signs of disease when a second dose of DENVax is 

administered. Similarly, monkeys immunized with two doses of DENVax show no signs of 

disease and no, or low, viremia upon subsequent challenge with wild-type DEN viruses [46]. 

Thus, DENVax administration does not enhance the infectivity of subsequent doses of live-

attenuated or wild-type dengue viruses.

Phase 1 studies of the monovalent DEN-2 PDK-53 candidate vaccine showed that the strain 

is safe, well-tolerated and generates long-lasting neutralizing antibody and cell-mediated 

immune responses to DEN-2 [32,33,40]. Vaccination of healthy adult subjects and children 

with the live-attenuated DEN-2 PDK-53 virus has been well tolerated and immunogenic in 

both monovalent and multivalent vaccine formulations. The vaccine development studies 

described in this review have culminated in the testing of tetravalent DENVax formulations 

in human clinical trials. The Phase 1 studies in progress at the time of this review are 

designed to determine if DENVax is safe in healthy adults who are flavivirus negative. The 

safety profile of DENVax is being determined not only in U.S. adults but also in adults in 

Colombia, in a high altitude, non-endemic region. In addition, preliminary immunogenicity 

results from these trials will assess whether two different formulations of DENVax can elicit 

neutralizing antibodies to all four dengue vaccines. Finally, DENVax is being delivered by 

two different routes of administration (SC and ID) in these early Phase 1 studies.

The DENVax vaccine is considerably different from previously tested tetravalent vaccines 

in that all four strains contain the same attenuating mutations as the DEN-2 PDK-53 strain, a 

strain that has been shown to be both safe and immunogenic in humans. Clinical data from 

the ongoing studies will shed light on whether these advantages translate to a safe dengue 

vaccine that can rapidly induce neutralizing antibodies against all four DEN serotypes. Such 
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a vaccine is critically needed to protect people from the threat of dengue infection and 

improve public health worldwide.

References

1. Halstead SB. Dengue. Lancet. 2007 Nov; 370(9599):1644–52. [PubMed: 17993365] 

2. Halstead SB. Dengue virus—mosquito interactions. Annu Rev Entomol. 2008; 53:273–91. 
[PubMed: 17803458] 

3. Guzman MG, Kouri G. Dengue: an update. Lancet Infect Dis. 2002 Jan; 2(1):33–42. [PubMed: 
11892494] 

4. Wilder-Smith A, Gubler DJ. Geographic expansion of dengue: the impact of international travel. 
Med Clinics North America. 2008 Nov; 92(6):1377–90.

5. Gubler DJ. Dengue/dengue haemorrhagic fever: history and current status. Novartis Found Symp. 
2006; 277:3–16. discussion -22, 71-3, 251-3. [PubMed: 17319151] 

6. Guzman A, Isturiz RE. Update on the global spread of dengue. Int J Antimicrob Agents. 2010 Nov; 
36(Suppl 1):S40–2. [PubMed: 20833000] 

7. Kyle JL, Harris E. Global spread and persistence of dengue. Annu Rev Microbiol. 2008; 62:71–92. 
[PubMed: 18429680] 

8. Halstead SB. Dengue. Curr Opin Infect Dis. 2002 Oct; 15(5):471–6. [PubMed: 12686878] 

9. Halstead SB, Heinz FX, Barrett AD, Roehrig JT. Dengue virus: molecular basis of cell entry and 
pathogenesis, 25–27 June 2003, Vienna, Austria. Vaccine. 2005 Jan; 23(7):849–56. [PubMed: 
15603884] 

10. Rosen L. The Emperor’s new clothes revisited, or reflections on the pathogenesis of dengue 
hemorrhagic fever. Am J Trop Med Hyg. 1977 May; 26(3):337–43. [PubMed: 869095] 

11. Rothman AL. Immunology and immunopathogenesis of dengue disease. Adv Virus Res. 2003; 
60:397–419. [PubMed: 14689699] 

12. Halstead SB, Chow JS, Marchette NJ. Immunological enhancement of dengue virus replication. 
Nat New Biol. 1973 May; 243(122):24–6. [PubMed: 17319077] 

13. Halstead SB, O’Rourke EJ. Dengue viruses and mononuclear phagocytes. I. Infection enhancement 
by non-neutralizing antibody. J Exp Med. 1977 Jul; 146(1):201–17. [PubMed: 406347] 

14. Halstead SB, Mahalingam S, Morovich MA, Ubol S, Mosser DM. Intrinsic antibody-dependent 
enhancement of microbial infection in macrophages: disease regulation by immune complexes. 
Lancet Infect Dis. 2010 Oct; 10(10):712–22. [PubMed: 20883967] 

15. Lorono-Pino MA, Cropp CB, Farfan JA, Vorndam AV, Rodriguez-Angulo EM, Rosado-Paredes 
EP, et al. Common occurrence of concurrent infections by multiple dengue virus serotypes. Am J 
Trop Med Hyg. 1999 Nov; 61(5):725–30. [PubMed: 10586902] 

16. Bhamarapravati, N.; Yoksan, S. Live attenuated tetravalent vaccine. In: Gubler, DJ.; Kuno, G., 
editors. Dengue and dengue hemorraghic fever. Wallingford, UK: CAB International; 1977. p. 
367-377.

17. Whitehead SS, Blaney JE, Durbin AP, Murphy BR. Prospects for a dengue virus vaccine. Nat Rev 
Microbiol. 2007 Jul; 5(7):518–28. [PubMed: 17558424] 

18. Kitchener S, Nissen M, Nasveld P, Forrat R, Yoksan S, Lang J, et al. Immunogenic-ity and safety 
of two live-attenuated tetravalent dengue vaccine formulations in healthy Australian adults. 
Vaccine. 2006 Feb; 24(9):1238–41. [PubMed: 16213632] 

19. Sun W, Cunningham D, Wasserman SS, Perry J, Putnak JR, Eckels KH, et al. Phase 2 clinical trial 
of three formulations of tetravalent live-attenuated dengue vaccine in flavivirus-naive adults. Hum 
Vaccin. 2009 Jan-Feb;5(1):33–40. [PubMed: 18670195] 

20. Guy B. Immunogenicity of sanofi pasteur tetravalent dengue vaccine. J Clin Virol. 2009 Oct; 
46(Suppl 2):S16–9. [PubMed: 19800561] 

21. McArthur JH, Durbin AP, Marron JA, Wanionek KA, Thumar B, Pierro DJ, et al. Phase I clinical 
evaluation of rDEN4Delta30-200,201: a live attenuated dengue 4 vaccine candidate designed for 
decreased hepatotoxicity. Am J Trop Med Hyg. 2008 Nov; 79(5):678–84. [PubMed: 18981503] 

Osorio et al. Page 13

Vaccine. Author manuscript; available in PMC 2015 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



22. Clements DE, Collar BA, Lieberman MM, Ogata S, Wang G, Harada KE, et al. Development of a 
recombinant tetravalent dengue virus vaccine: immunogenicity and efficacy studies in mice and 
monkeys. Vaccine. 2010 Mar; 28(15):2705–15. [PubMed: 20097152] 

23. Holman DH, Wang D, Raviprakash K, Raja NU, Luo M, Zhang J, et al. Two complex, adenovirus-
based vaccines that together induce immune responses to all four dengue virus serotypes. Clin 
Vaccine Immunol. 2007 Feb; 14(2):182–9. [PubMed: 17192403] 

24. Raviprakash K, Wang D, Ewing D, Holman DH, Block K, Woraratanadharm J, et al. A tetravalent 
dengue vaccine based on a complex adenovirus vector provides significant protection in rhesus 
monkeys against all four serotypes of dengue virus. J Virol. 2008 Jul; 82(14):6927–34. [PubMed: 
18480438] 

25. Beckett CG, Tjaden J, Burgess T, Danko JR, Tamminga C, Simmons M, et al. Evaluation of a 
prototype dengue-1 DNA vaccine in a Phase 1 clinical trial. Vaccine. 2011 Jan; 29(5):960–8. 
[PubMed: 21111785] 

26. Clements DE, Coller BA, Lieberman MM, Ogata S, Wang G, Harada KE, et al. Development of a 
recombinant tetravalent dengue virus vaccine: immunogenicity and efficacy studies in mice and 
monkeys. Vaccine. 2010 Mar; 28(15):2705–15. [PubMed: 20097152] 

27. Apt D, Raviprakash K, Brinkman A, Semyonov A, Yang S, Skinner C, et al. Tetravalent 
neutralizing antibody response against four dengue serotypes by a single chimeric dengue 
envelope antigen. Vaccine. 2006 Jan; 24(3):335–44. [PubMed: 16125280] 

28. Yoksan, S.; Bhamarapravati, N.; Halstead, S. Dengue virus vaccine development: study on 
biological markers of cloned dengue 1–4 viruses serially passaged in primary kidney cells. In: St 
George, TD.; Kay, BH.; Blok, J., editors. Arbovirus Research in Australia, Proceedings of the 
Fourth Symposium. Brisbane, Australia: CSIRO/QIMR; 1986. p. 35-8.

29. Butrapet S, Huang CY, Pierro DJ, Bhamarapravati N, Gubler DJ, Kinney RM. Attenuation markers 
of a candidate dengue type 2 vaccine virus, strain 16681 (PDK-53), are defined by mutations in the 
5′noncoding region and nonstructural proteins 1 and 3. J Virol. 2000 Apr; 74(7):3011–9. 
[PubMed: 10708415] 

30. Kinney RM, Butrapet S, Chang GJ, Tsuchiya KR, Roehrig JT, Bhamarapravati N, et al. 
Construction of infectious cDNA clones for dengue 2 virus: strain 16681 and its attenuated 
vaccine derivative, strain PDK-53. Virology. 1997 Apr; 230(2):300–8. [PubMed: 9143286] 

31. Angsubhakorn S, Moe JB, Marchette NJ, Palumbo NE, Yoksan S, Bhamarapravati N. 
Neurovirulence effects of dengue-2 viruses on the rhesus (Macaca mulatta) brain and spinal cord. 
Southeast Asian J Tropical Med Public Health. 1987 Mar; 18(1):52–5.

32. Bhamarapravati N, Yoksan S, Chayaniyayothin T, Angsubphakorn S, Bunyaratvej A. 
Immunization with a live attenuated dengue-2-virus candidate vaccine (16681- PDK 53): clinical, 
immunological and biological responses in adult volunteers. Bull World Health Organ. 1987; 
65(2):189–95. [PubMed: 3496985] 

33. Vaughn DW, Hoke CH Jr, Yoksan S, LaChance R, Innis BL, Rice RM, et al. Testing of a dengue 2 
live-attenuated vaccine (strain 16681 PDK 53) in ten American volunteers. Vaccine. 1996 Mar; 
14(4):329–36. [PubMed: 8744561] 

34. Bhamarapravati N, Yoksan S. Study of bivalent dengue vaccine in volunteers. Lancet. 1989 May.
1(8646):1077. [PubMed: 2566022] 

35. Bhamarapravati N, Sutee Y. Live attenuated tetravalent dengue vaccine. Vaccine. 2000 May; 
18(Suppl 2):44–7. [PubMed: 10821973] 

36. Kanesathasan N, Sun W, Kim-Ahn G, Van Albert S, Putnak JR, King A, et al. Safety and 
immunogenicity of attenuated dengue virus vaccines (Aventis Pasteur) in human volunteers. 
Vaccine. 2001 Apr; 19(23–24):3179–88. [PubMed: 11312014] 

37. Sabchareon A, Lang J, Chanthavanich P, Yoksan S, Forrat R, Attanath P, et al. Safety and 
immunogenicity of tetravalent live-attenuated dengue vaccines in Thai adult volunteers: role of 
serotype concentration, ratio, and multiple doses. Am J Trop Med Hyg. 2002 Mar; 66(3):264–72. 
[PubMed: 12139219] 

38. Sabchareon A, Lang J, Chanthavanich P, Yoksan S, Forrat R, Attanath P, et al. Safety and 
immunogenicity of a three dose regimen of two tetravalent live-attenuated dengue vaccines in 

Osorio et al. Page 14

Vaccine. Author manuscript; available in PMC 2015 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



five- to twelve-year-old Thai children. Pediatr Infect Dis J. 2004 Feb; 23(2):99–109. [PubMed: 
14872173] 

39. Guy B, Chanthavanich P, Gimenez S, Sirivichayakul C, Sabchareon A, Begue S, et al. Evaluation 
by flow cytometry of antibody-dependent enhancement (ADE) of dengue infection by sera from 
Thai children immunized with a live-attenuated tetravalent dengue vaccine. Vaccine. 2004 Sep; 
22(27–28):3563–74. [PubMed: 15315835] 

40. Chanthavanich P, Luxemburger C, Sirivichayakul C, Lapphra K, Pengsaa K, Yoksan S, et al. Short 
report: immune response and occurrence of dengue infection in Thai children three to eight years 
after vaccination with live attenuated tetravalent dengue vaccine. Am J Trop Med Hyg. 2006 Jul; 
75(1):26–8. [PubMed: 16837703] 

41. Huang CY, Butrapet S, Tsuchiya KR, Bhamarapravati N, Gubler DJ, Kinney RM. Dengue 2 
PDK-53 virus as a chimeric carrier for tetravalent dengue vaccine development. J Virol. 2003 
Nov; 77(21):11436–47. [PubMed: 14557629] 

42. Butrapet S, Kinney RM, Huang CY. Determining genetic stabilities of chimeric dengue vaccine 
candidates based on dengue 2 PDK-53 virus by sequencing and quantitative TaqMAMA. J Virol 
Methods. 2006 Jan; 131(1):1–9. [PubMed: 16087248] 

43. Kinney RM, Huang CY. Development of new vaccines against dengue fever and Japanese 
encephalitis. Intervirology. 2001; 44(2–3):176–97. [PubMed: 11509879] 

44. Huang CY, Butrapet S, Pierro DJ, Chang GJ, Hunt AR, Bhamarapravati N, et al. Chimeric dengue 
type 2 (vaccine strain PDK-53)/dengue type 1 virus as a potential candidate dengue type 1 virus 
vaccine. J Virol. 2000 Apr; 74(7):3020–8. [PubMed: 10708416] 

45. Johnson AJ, Roehrig JT. New mouse model for dengue virus vaccine testing. J Virol. 1999 Jan; 
73(1):783–6. [PubMed: 9847388] 

46. Osorio JE, Brewoo J, Silengo SJ, Arguello J, Moldovan IR, Tary-Lehmann M, et al. Efficacy of a 
tetravalent chimeric dengue vaccine (DENVax) in cynomolgus macaques. Am J Trop Med Hyg. 
2011; 84(6):978–87. [PubMed: 21633037] 

47. Butrapet S, Rabablert J, Angsubhakorn S, Wiriyarat W, Huang C, Kinney R, et al. Chimeric 
dengue type 2/type 1 viruses induce immune responses in cynomolgus monkeys. Southeast Asian J 
Tropical Med Public Health. 2002 Sep; 33(3):589–99.

48. Halstead SB, Simasthien P. Observations related to the pathogenesis of dengue hemorrhagic fever. 
II. Antigenic and biologic properties of dengue viruses and their association with disease response 
in the host. Yale J Biol Med. 1970 Apr; 42(5):276–92. [PubMed: 5464392] 

49. Gubler DJ, Nalim S, Tan R, Saipan H, Sulianti Saroso J. Variation in susceptibility to oral 
infection with dengue viruses among geographic strains of Aedes aegypti. Am J Trop Med Hyg. 
1979 Nov; 28(6):1045–52. [PubMed: 507282] 

Osorio et al. Page 15

Vaccine. Author manuscript; available in PMC 2015 October 02.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Genetic structure of DENVax vaccine strains. The diagram shows the gene arrangements for 

the parental DEN-2 PDK-53 as well as the three chimeras, DENVax-1, -3 and -4. Arrows 

indicate the three pivotal mutations in DEN-2 PDK-53 that determine the attenuating 

phenotype of the viruses (see text). Shading indicates the origin of the prM and E genes in 

the chimeras.

See Huang et al. [41] for details.
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Fig. 2. 
Neurovirulence of ChiDEN-V viruses in newborn ICR mice. Newborn ICR mice were 

challenged intracranially with 104 PFU of each virus. Percent mortality = dead mice and 

mice euthanized at signs of morbidity.

Data are from fig. 2 in Huang et al. [41].
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Fig. 3. 
Neutralizing antibody titers after DENVax administration to non-human primates. Groups of 

eight cynomolgus macaques were immunized with the three indicated tetravalent DENVax 

formulations (see text) on days 0 and 60. Sera were collected at various time points after 

immunization. The figure indicates geometric mean PRNT50 30 days after the primary 

(“Prime”) and 30 days after the secondary (“Boost”) immunizations for each of the four 

DEN serotypes.
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Table 1

Summary of literature pertaining to human clinical experience with DEN-2 PDK-53.

Author (year of 
publication) [reference] Study design Observations

Bhamarapravati (1987) [32] Single subcutaneous (SC) dose of 
monovalent DEN-2 PDK-53 to 10 healthy 
adult dengue negative volunteers.

Safety: No reactions at the injection site. Headache and 
abdominal pain reported in 5 of 10 subjects. Myalgia, anorexia 
and nausea occurred less frequently. Viremia: Detected in one 
volunteer on day 10. Immunogenicity: Seroconversion in all 
subjects to DEN-2 that persisted for 1.5 years

Vaughn (1996) [33] Single SC dose of monovalent DEN-2 
PDK-53 to 10 healthy adult dengue 
negative volunteers.

Safety: No reactions at the injection site. Transient headache, 
myalgia and arthralgia reported in several subjects. Viremia: 
Detected in 8 of 10 subjects between days 4 and 12. 
Immunogenicity: Seroconversion to DEN-2 detected in all 
subjects. Neutralizing antibody response persisted.

Bhamarapravati (2000) [35] Single SC dose of bivalent DEN-2 PDK-53 
with DEN-4 or DEN-1 or trivalent with 
DEN-1 and DEN-4. Single SC dose of 
tetravalent formulation.

Safety: No details of observed side effects; authors stated that 
the vaccines were well-tolerated. Viremia: No data provided. 
Immunogenicity: Seroconversion in all subjects to two or three 
serotypes given bivalent or trivalent vaccines, respectively. All 
six subjects given tetravalent vaccine seroconverted to DEN-1 
and DEN-3, five of six converted to DEN-2 and four of six 
seroconverted to DEN-4.

Kanesathasan (2001) [36] Single SC dose of monovalent DEN-2 
PDK-53 to five healthy flavivirus 
seronegative adult volunteers.

Safety: No reactions at the injection site. Mild symptoms of 
headache (4), myalgia, malaise, pruritus or transient fever 
reported. Slight leukopenia in two subjects around day 10. 
Viremia: Virus isolation by polymerase chain reaction (PCR) in 
20% of subjects days 7–10 post dosing. Immunogenicity: All 
seroconverted.

Kanesathasan (2001) [36] Single SC dose of tetravalent vaccine: 
DEN-2 PDK-53 combined with live-
attenuated DEN-1, DEN-3 and DEN-4a, to 
10 healthy adult volunteers.

Safety: Erythema at the injection site in 2 of 10 volunteers. 
Moderate headache, malaise and myalgia, eye pain and pruritus 
were common. Four subjects had mild fever and all experienced 
maculopapular rashes over the trunk and extremities. Increased 
liver enzymes in a majority of subjects. Viremia: Detected in all 
subjects between days 5 and 12, identified as DEN-3. One 
volunteer had concurrent DEN-3 and DEN-4 viremia on day 11. 
Immunogenicity: Highest antibody titers were to DEN-3 but 
only one subject seroconverted to all four DEN serotypes.

Sabchareon (2002) [37] Two doses of tetravalent vaccine given 6 
months apart to 59 adults. Dosed with 
placebo (N = 10) or various tetravalent 

formulationsa combinations of dose. 
Safety: Majority of subjects with mild to 
headache, rash, eye pain, fever and 
myalgia. Five subjects were hospitalized 
for dengue-like fever with concomitant 
severe neutropenia and thrombocytopenia. 
Best safety profile observed in groups with 
lowest dose of DEN-3 (1 log10 PFU) 
suggesting the DEN-3 virus was associated 
with adverse events. Viremia: DEN-3 virus 
detected in 47 of 49 subjects after first 
dose. DEN-2 or DEN-4 viremia detected in 
21 of 47 after second dose. 
Immunogenicity: 100% seroconversion to 
DEN-3, 85%, 78% and 71% 
seroconversion to DEN-1, DEN-2 and 
DEN-4 after the second dose

Sabchareon (2004) [38] Three doses of tetravalent vaccinea; 0, 3–5 
months and 8–12 months. Subjects were 
103 healthy children aged 5–12 years. Two 
tetravalent formulations tested.

Safety: After first dose, mild to moderate symptoms fever, rash, 
headache and myalgia observed in 79%–90% of subjects. Five 
subjects had severe reactions including dengue-like fever in one 
subject. Mild and moderate increases in ALT and neutropenia 
observed after first dose. Viremia: DEN-3 viremia observed in 
>75% of subjects after first dose but not seen thereafter. Viremia 
for DEN-1, DEN-2 and DEN-4 seen after first, second and third 
doses in a small percentage of subjects. Immunogenicity: 100% 
seroconversion for DEN-1, DEN-2 and DEN-3; 89–100% 
seroconversion to DEN-4 after three doses.
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Author (year of 
publication) [reference] Study design Observations

Kitchener (2006) [18] One dose of two formulations of 
tetravalent vaccinea administered adult 
volunteers. All subjects seronegative for 
dengue.

Safety: All 10 subjects developed mild to moderate reactions 
consistent with mild dengue-like syndrome, including fever, 
headache, malaise, nausea or vomiting, arthralgia, myalgia, eye 
pain and skin rash. Study was discontinued by the sponsor prior 
to administration of intended second dose. Viremia: DEN-3 
detected in seven of 10 subjects. DEN-4 was detected in two 
subjects. DEN-1 and DEN-2 were not detected. Immunogenicity: 
Seroconversion in all subjects to DEN-3. Six of 10 
seroconverted to DEN-1 and DEN-4 and four of 10 
seroconverted to DEN-2.

Chanthavanich (2006) [40] Single dose of various formulations of 
tetravalent vaccinea administered to 113 
volunteers aged 4–15 years. Age and 
address matched with 226 controls. 
Follow-up 3–8 years after vaccination.

Safety: No excess hospitalizations for clinically suspected 
dengue fever or DHF in vaccinees (4 of 113: one with dengue 
fever and three with hemorrhagic fever) compared to the 
unvaccinated control children (14 of 226 with dengue 
hemorrhagic fever). Immunogenicity: 75% of the individuals had 
seroconverted to DEN-2 virus 6–12 months post-vaccination 
while 82% had seroconverted 3–8 years after vaccination. 
Similar trends were observed for DEN-1, DEN-3 and DEN-4. 
The increase in seroconversion is likely due to natural exposure 
of the children in the endemic area.

a
Attenuated DEN-1, DEN-3 and DEN-4 strains in the tetravalent vaccines were independently derived by serial passage in cell culture and were 

not based on DEN-2 PDK-53.
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Table 2

Sources of prM/E gene regions in DENVax vaccine viruses.

Virus Strain Origin Source Reference

Viral origins of the prM/E gene region expressed in ChiDEN and DENVax vaccine virusesa

DEN-1 16007 Thailand, 1964 DHF/DSS patient Halstead and Simasthien [48]

DEN-2 16681 Thailand, 1964 DHF/DSS patient Halstead and Simasthien [48]

DEN-3 16562 Philippines, 1964 DHF patient Halstead and Simasthien [48]

DEN-4 1036 Indonesia, 1976 DF patient Gubler et al. [49]

a
See table 1 in [43].

Vaccine. Author manuscript; available in PMC 2015 October 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Osorio et al. Page 22

T
ab

le
 3

Im
m

un
og

en
ic

ity
 o

f 
M

on
ov

al
en

t C
hi

D
E

N
-V

 v
ir

us
es

 in
 a

du
lt 

A
G

12
9 

m
ic

e.

V
ir

us
E

xp
er

im
en

t
Im

m
un

iz
at

io
n 

do
se

a
A

nt
ib

od
y 

ti
te

r 
(P

R
N

T
50

)
Su

rv
iv

or
s 

(A
)

N
eu

tr
al

iz
in

g 
an

ti
bo

dy
 t

it
er

 a
t 

da
y 

68
 (

B
)

PB
S

A
b

n.
a.

c
<

10
d

0/
lle

n.
a.

D
E

N
-1

 1
60

07
A

10
4  

PF
U

25
60

6/
6

n.
a.

C
hi

D
E

N
-2

/1
A

10
4  

PF
U

64
0

6/
6

n.
a.

D
E

N
-3

 1
65

62
B

f
10

5  
PF

U
32

0
n.

a.
64

0

C
hi

D
E

N
-2

/3
B

10
5  

PF
U

16
0

n.
a.

64
0

D
E

N
-4

 1
03

6
B

10
5  

PF
U

64
0

n.
a.

12
80

C
hi

D
E

N
-2

/4
B

10
5  

PF
U

40
n.

a.
32

0

a M
ic

e 
im

m
un

iz
ed

, c
ha

lle
ng

ed
, a

nd
 b

oo
st

ed
 in

tr
ap

er
ito

ne
al

ly
.

b E
xp

er
im

en
t A

: 3
–5

-w
ee

k-
ol

d 
A

G
12

9 
m

ic
e 

im
m

un
iz

ed
 in

tr
ap

er
ito

ne
al

ly
, b

le
d 

at
 d

ay
 2

7,
 th

en
 c

ha
lle

ng
ed

 in
tr

ap
er

ito
ne

al
ly

 a
t d

ay
 2

8 
w

ith
 1

07
 P

FU
 o

f 
w

ild
-t

yp
e 

D
E

N
-1

 M
oc

hi
zu

ki
 v

ir
us

. M
ic

e 
w

er
e 

bl
ed

 
ag

ai
n 

at
 3

0 
da

ys
 a

ft
er

 th
e 

D
E

N
-1

 v
ir

us
 c

ha
lle

ng
e.

 S
ee

 ta
bl

e 
5 

in
 [

41
].

c N
ot

 a
pp

lic
ab

le
.

d Se
ru

m
-d

ilu
tio

n 
pl

aq
ue

-r
ed

uc
tio

n 
(P

R
N

T
) 

an
tib

od
y 

tit
er

 f
or

 p
oo

le
d 

se
ra

. P
R

N
T

50
 ti

te
rs

 r
ep

re
se

nt
 r

ec
ip

ro
ca

l a
nt

ib
od

y 
tit

er
s 

at
 w

hi
ch

 5
0%

 o
r 

m
or

e 
of

 th
e 

ho
m

ol
og

ou
s 

w
ild

-t
yp

e 
in

pu
t v

ir
us

 w
as

 n
eu

tr
al

iz
ed

.

e N
um

be
r 

of
 s

ur
vi

vo
rs

/to
ta

l A
G

12
9 

m
ic

e 
ch

al
le

ng
ed

 in
tr

ap
er

ito
ne

al
ly

 w
ith

 1
0 

PF
U

 o
f 

D
E

N
-1

 M
oc

hi
zu

ki
 v

ir
us

.

f E
xp

er
im

en
t B

: 6
–8

-w
ee

k-
ol

d 
A

G
12

9 
m

ic
e 

w
er

e 
im

m
un

iz
ed

 in
tr

ap
er

ito
ne

al
ly

, b
le

d 
on

 d
ay

 4
0,

 th
en

 b
oo

st
ed

 in
tr

ap
er

ito
ne

al
ly

 w
ith

 th
e 

sa
m

e 
do

se
 o

f 
vi

ru
s 

on
 d

ay
 4

2.
 M

ic
e 

w
er

e 
bl

ed
 a

ga
in

 a
t 2

6 
da

ys
 a

ft
er

 
th

e 
bo

os
t. 

Se
e 

ta
bl

e 
6 

in
 [

41
].

Vaccine. Author manuscript; available in PMC 2015 October 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Osorio et al. Page 23

T
ab

le
 4

Im
m

un
og

en
ic

ity
 o

f 
te

tr
av

al
en

t C
hi

D
E

N
 v

ir
us

es
 in

 a
du

lt 
A

G
12

9 
m

ic
e.

T
et

ra
va

le
nt

 f
or

m
ul

at
io

n
a-

D
E

N
-1

 P
R

N
T

50
a-

D
E

N
-2

 P
R

N
T

50
a-

D
E

N
-3

 P
R

N
T

50
a-

D
E

N
-4

 P
R

N
T

50

D
ay

 4
0

D
ay

 6
8

D
ay

 4
0

D
ay

 6
8

D
ay

 4
0

D
ay

 6
8

D
ay

 4
0

D
ay

 6
8

C
hi

D
E

N
-T

et
ra

-V
a

64
0b

25
60

12
80

25
60

16
0

12
80

80
32

0

So
ur

ce
 o

f d
at

a:
 ta

bl
e 

7 
in

 H
ua

ng
 e

t a
l. 

[4
1]

.

a 6–
8-

w
ee

k-
ol

d 
A

G
12

9 
m

ic
e 

w
er

e 
im

m
un

iz
ed

 in
tr

ap
er

ito
ne

al
ly

 w
ith

 m
ix

tu
re

 o
f 

10
5  

PF
U

 o
f 

ea
ch

 v
ir

us
 a

t d
ay

s 
0 

an
d 

42
. M

ic
e 

w
er

e 
bl

ed
 o

n 
da

ys
 4

0 
an

d 
68

.

b R
ec

ip
ro

ca
l P

R
N

T
50

 a
nt

ib
od

y 
tit

er
 o

f 
po

ol
ed

 s
er

a 
(n

 =
 6

) 
ag

ai
ns

t w
ild

-t
yp

e 
D

E
N

-1
 1

60
07

, D
E

N
-2

 1
66

81
, D

E
N

-3
 1

65
62

, a
nd

 D
E

N
-4

 1
03

6 
vi

ru
se

s.

Vaccine. Author manuscript; available in PMC 2015 October 02.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Osorio et al. Page 24

T
ab

le
 5

Pe
rc

en
ta

ge
 o

f 
no

n-
hu

m
an

 p
ri

m
at

es
 th

at
 s

er
oc

on
ve

rt
ed

* 
fo

llo
w

in
g 

pr
im

ar
y 

an
d 

se
co

nd
ar

y 
im

m
un

iz
at

io
ns

 w
ith

 D
E

N
V

ax
 f

or
m

ul
at

io
ns

.

F
or

m
ul

at
io

n
D

E
N

V
-1

D
E

N
V

-2
D

E
N

V
-3

D
E

N
V

-4

D
ay

 3
0

D
ay

 9
1

D
ay

 3
0

D
ay

 9
1

D
ay

 3
0

D
ay

 9
1

D
ay

 3
0

D
ay

 9
1

3:
3:

3:
3

87
.5

%
10

0%
10

0%
10

0%
75

%
10

0%
37

.5
%

37
.5

%

3:
3:

5:
5

62
.5

%
87

.5
%

87
.5

%
10

0%
10

0%
10

0%
87

.5
%

10
0%

5:
5:

5:
5

87
.5

%
10

0%
87

.5
%

10
0%

87
.5

%
10

0%
50

%
87

.5
%

C
on

tr
ol

0%
0%

0%
0%

0%
0%

0%
0%

So
ur

ce
 o

f d
at

a:
 O

so
ri

o 
et

 a
l. 

[4
6]

.

‘*
’ 

Se
ro

co
nv

er
si

on
: d

ef
in

ed
 a

s 
PR

N
T

 ≥
10

 a
nd

 ≥
4-

fo
ld

 in
cr

ea
se

 in
 P

R
N

T
50

 o
ve

r 
da

y 
0 

ba
se

lin
e 

tit
er

. A
ll 

an
im

al
s 

re
ce

iv
ed

 D
E

N
V

ax
 f

or
m

ul
at

io
ns

 o
r 

va
cc

in
e 

di
lu

en
t s

ub
cu

ta
ne

ou
sl

y 
in

 0
.5

 m
L

 o
n 

th
e 

up
pe

r 

ba
ck

 o
n 

da
ys

 0
 a

nd
 6

0.

Vaccine. Author manuscript; available in PMC 2015 October 02.


